Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Immunol ; 165: 11-18, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38128392

RESUMEN

Chimeric antigen receptor (CAR)-modified T and NK cell immunotherapy is a promising approach for cancer treatment. Due to the lack of tunability in anti-tumor activity, conventional CAR therapies have limited efficacy at low tumor antigen densities. To tune the CAR response to tumor cell surface antigens, we have developed a split CAR using the SpyCatcher-SpyTag system. The SpyCatcher serves as the ectodomain to constitute a SpyCatcher-CAR (SpyCAR), while SpyTag is attached to the antibodies that recognize tumor antigens. With dimerization mediated by SpyCatcher and SpyTag, the number and activation level of SpyCARs recruited by tumor antigens depends on the SpyTag number in the "antibody-SpyTag" fusion protein. The results demonstrated that the increasing number of SpyTags effectively enhanced the cytotoxicity of SpyCAR-NK92 cells against target cells. The development of SpyCAR with tunable cytotoxicity provides a novel strategy for CAR-based tumor immunotherapies.


Asunto(s)
Neoplasias , Humanos , Neoplasias/terapia , Células Asesinas Naturales , Antígenos de Neoplasias
2.
Plants (Basel) ; 12(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38068563

RESUMEN

The allocation of plant biomass above and below ground reflects their strategic resource utilization, crucial for understanding terrestrial carbon flux dynamics. In our comprehensive study, we analyzed biomass distribution patterns in 580 broadleaved and 345 coniferous forests across China from 2005 to 2020, aiming to discern spatial patterns and key drivers of belowground biomass proportion (BGBP) in these ecosystems. Our research revealed a consistent trend: BGBP decreases from northwest to southeast in both forest types. Importantly, coniferous forests exhibited significantly higher BGBP compared to broadleaved forests (p < 0.001). While precipitation and soil nutrients primarily influenced biomass allocation in broadleaved forests, temperature and soil composition played a pivotal role in coniferous forests. Surprisingly, leaf traits had a negligible impact on BGBP (p > 0.05). Climatic factors, such as temperature and rainfall, influenced biomass partitioning in both strata by altering soil nutrients, particularly soil pH. These findings provide valuable insights into understanding carbon sequestration dynamics in forest ecosystems and improving predictions of the future trajectory of this critical carbon cycle component.

3.
Mol Immunol ; 155: 91-99, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36736195

RESUMEN

Adoptive chimeric antigen receptor (CAR)-modified T or NK cells (CAR-T/NK) have emerged as a novel form of disease treatment. Lentiviral vectors (LVs) are commonly employed to engineer NK cells for the efficient expression of CARs. This study reported the influence of single-promoter and dual-promoter LVs on the CAR expression and cytotoxicity of engineered NK cells. We constructed a third-generation NKG2D-based CAR that kills cancer cells by targeting up to eight stress-induced ligands (NKG2DLs). Our results demonstrated that the CAR exhibits both a higher expression level and a higher coexpression concordance with the GFP reporter in HEK-293T or NK92 cells by utilizing the optimized single-promoter pCDHsp rather than the original dual-promoter pCDHdp. After puromycin selection, the pCDHsp produces robust CAR expression and enhanced in vitro cytotoxicity of engineered NK cells. Therefore, infection with a single-promoter pCDHsp lentivector is recommended to prepare CAR-engineered NK cells. This research helps to optimize the production of CAR-NK cells and enhance their functional activity, to provide CAR-NK cell products with better and more uniform quality.


Asunto(s)
Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Vectores Genéticos , Células Asesinas Naturales , Inmunoterapia Adoptiva/métodos , Línea Celular Tumoral , Citotoxicidad Inmunológica
4.
Food Funct ; 14(1): 250-261, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36484340

RESUMEN

Castanopsis is diffusely spread in tropical and subtropical regions and is an important nectar source plant in China. The Castanopsis honey (CH) is characterized by its bitter taste. However, its composition and functions remain unclear. In this study, the physicochemical parameters, chemical composition, and antioxidant capacity of CH were comprehensively investigated, with the anti-inflammatory effects of the Castanopsis honey extract (CHE) evaluated based on the RAW 264.7 cell inflammatory model. The results revealed a high level of quality in CH based on the quality standards. Among a total of 84 compounds identified in CH, 5 high response compounds and 29 phenols were further quantified by UPLC-Q/TOF-MS. The high content of phenylethylamine (117.58 ± 64.81 mg kg-1) was identified as a potential marker of CH. Furthermore, the CH showed evident antioxidant activities, and the anti-inflammatory activities of CHE were observed to inhibit the release of nitric oxide (NO) and reduce the content of tumor necrosis factor alpha (TNF-α) and improve the content of interleukin-10 (IL-10) by regulating the NF-κB pathway. Our study indicates that CH has sound physicochemical properties and biological activities with a high level of quality, providing strong experimental evidence to support the further economic and agricultural development and application of CH.


Asunto(s)
Antioxidantes , Miel , Tracheophyta , Animales , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antioxidantes/farmacología , Antioxidantes/química , Lipopolisacáridos/farmacología , FN-kappa B/genética , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Células RAW 264.7 , Factor de Necrosis Tumoral alfa/metabolismo , Tracheophyta/química
5.
Tree Physiol ; 42(4): 754-770, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35029689

RESUMEN

Atmospheric nitrogen (N) deposition and increasing precipitation affect carbon sequestration in terrestrial ecosystems, but how these two concurrent global change variables affect xylem growth in trees (i.e., independently or interactively) remains unclear. We conducted novel experiments in central China to monitor the xylem growth in a dominant species (Quercus acutissima Caruth.) in response to N addition (CN), supplemental precipitation (CW) or both treatments (CNW), compared with untreated controls (C). Measurements were made at weekly intervals during 2014-15. We found that supplemental precipitation significantly enhanced xylem growth in the dry spring of 2015, indicating a time-varying effect of increased precipitation on intra-annual xylem growth. Elevated N had no significant effect on xylem increment, xylem growth rate, and lumen diameters and potential hydraulic conductivity (Ks) of earlywood vessels, but Ks with elevated N was significantly negatively related to xylem increment. The combination of additional N and supplemental precipitation suppressed the positive effect of supplemental precipitation on xylem increment in the dry spring of 2015. These findings indicated that xylem width was more responsive to supplemental precipitation than to increasing N in a dry early growing season; the positive effect of supplemental precipitation on xylem growth could be offset by elevated N resources. The negative interactive effect of N addition and supplemental precipitation also suggested that increasing N deposition and precipitation in the future might potentially affect carbon sequestration of Q. acutissima during the early growing season in central China. The effects of N addition and supplemental precipitation on tree growth are complex and might vary depending on the growth period and local climatic conditions. Therefore, future models of tree growth need to consider multiple-time scales and local climatic conditions when simulating and projecting global change.


Asunto(s)
Quercus , Ecosistema , Nitrógeno , Quercus/fisiología , Árboles , Xilema/fisiología
6.
Foods ; 11(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37430955

RESUMEN

The honeycomb composition is very complex, containing honey, royal jelly, pollen, and propolis, and thus contains a large number of bioactive ingredients, such as polyphenols and flavonoids. In recent years, honeycomb as a new functional food resource has been favored by many bee product companies, but the basic research on honeycomb is lacking. The aim of this study is to reveal the chemical differences between A. cerana honeycombs (ACC) and A. mellifera honeycombs (AMC). In this paper, we studied the volatile organic components (VOCs) of ACC and AMC by solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME/GC-MS). A total of 114 VOCs were identified in 10 honeycombs. Furthermore, principal component analysis (PCA) revealed that the chemical composition of ACC and AMC were different. Additionally, orthogonal partial least squares discrimination analysis (OPLS-DA) revealed that benzaldehyde, octanal, limonene, ocimene, linalool, α-terpineol, and decanal are the significant VOCs in AMC extracts, which are mainly derived from propolis. OPLS-DA model also identified 2-phenylethanol, phenethyl acetate, isophorone, 4-oxoisophorone, betula, ethyl phenylacetate, ethyl palmitate, and dihydrooxophorone as potential discriminatory markers of ACC, which likely contribute to protecting the hive against microorganisms and keep it clean.

7.
Tree Physiol ; 42(2): 317-324, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34505152

RESUMEN

Auxin is involved in various developmental processes of plants, including cell division in cambium and xylem differentiation. However, most studies linking auxin and xylem cell production are performed in environments with a strong seasonality (i.e., temperate and boreal climates). The temporal dynamics of auxin and cambial activity of subtropical trees remain basically unknown. In this study, we sampled four microcores weekly in three individuals of Chinese red pine (Pinus massoniana Lamb.) from February to December 2015-16 to compare xylem formation with auxin concentration in subtropical China. During the entire period of sampling, the number of cambial cells varied from 2 to 7, while the number of cells in the enlarging zone ranged from 1 to 4 and from 1 to 5 in the wall-thickening zone. In 2015, the average auxin concentration was 3.46 ng g-1, with 33 xylem cells being produced at the end of the year. In 2016, a lower auxin concentration (2.59 ng g-1) corresponded to a reduced annual xylem production (13.7 cells). No significant relationship between auxin concentration and number of xylem cells in differentiation was found at the weekly scale. Unlike in boreal and temperate forests, the lack of wood formation seasonality in subtropical forests makes it more difficult to reveal the relationship between auxin concentration and number of xylem cells in differentiation at the intra-annual scale. The frequent and repeated samplings might have reduced auxin concentration in the developing cambium and xylem, resulting in a lower xylem cell production.


Asunto(s)
Pinus , Cámbium , China , Bosques , Ácidos Indolacéticos , Xilema
8.
Anal Biochem ; 639: 114511, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34883070

RESUMEN

Huanglongbing (HLB), a devastating disease for citrus worldwide, is caused by Candidatus Liberibacter asiaticus (CLas). In this study, we employed a novel extractive electrospray ionization-mass spectrometry (EESI-MS) method to analyze the metabolites in leaves of uninfected and HLB-infected Newhall navel orange. The results showed that uninfected and HLB-infected leaves could be readily distinguished based on EESI-MS combined by multivariable analysis. Nine phenolic compounds involved in phenylpropanoid pathway, such as p-coumaric acid, naringin, and apigenin, were principal components to distinguish the leaves of uninfected and HLB-infected Newhall navel orange. Gene expression was also conducted to further explore the molecular mechanism of phenylpropanoid branch pathway in HLB. The expression of genes (4CL, HCT, CHI, CHS, CYP, and C12R) involved in phenylpropanoid branch pathway was increased in asymptomatic and early period of HLB-infected leaves, while decreased in later period of HLB-infected leaves. This study provides a novel method for early detection of citrus HLB and suggests the regulation mechanism of phenylpropanoid pathway in the interaction between citrus and CLas.


Asunto(s)
Citrus/microbiología , Liberibacter/fisiología , Enfermedades de las Plantas/microbiología , Citrus/metabolismo , Redes y Vías Metabólicas , Fenoles/metabolismo , Espectrometría de Masa por Ionización de Electrospray
10.
Proc Natl Acad Sci U S A ; 117(34): 20645-20652, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32759218

RESUMEN

Wood formation consumes around 15% of the anthropogenic CO2 emissions per year and plays a critical role in long-term sequestration of carbon on Earth. However, the exogenous factors driving wood formation onset and the underlying cellular mechanisms are still poorly understood and quantified, and this hampers an effective assessment of terrestrial forest productivity and carbon budget under global warming. Here, we used an extensive collection of unique datasets of weekly xylem tissue formation (wood formation) from 21 coniferous species across the Northern Hemisphere (latitudes 23 to 67°N) to present a quantitative demonstration that the onset of wood formation in Northern Hemisphere conifers is primarily driven by photoperiod and mean annual temperature (MAT), and only secondarily by spring forcing, winter chilling, and moisture availability. Photoperiod interacts with MAT and plays the dominant role in regulating the onset of secondary meristem growth, contrary to its as-yet-unquantified role in affecting the springtime phenology of primary meristems. The unique relationships between exogenous factors and wood formation could help to predict how forest ecosystems respond and adapt to climate warming and could provide a better understanding of the feedback occurring between vegetation and climate that is mediated by phenology. Our study quantifies the role of major environmental drivers for incorporation into state-of-the-art Earth system models (ESMs), thereby providing an improved assessment of long-term and high-resolution observations of biogeochemical cycles across terrestrial biomes.


Asunto(s)
Tracheophyta/crecimiento & desarrollo , Madera/crecimiento & desarrollo , Xilema/crecimiento & desarrollo , Clima , Cambio Climático , Ecosistema , Bosques , Calentamiento Global , Modelos Biológicos , Fotoperiodo , Estaciones del Año , Temperatura , Tracheophyta/genética , Árboles/crecimiento & desarrollo
11.
Tree Physiol ; 40(12): 1639-1647, 2020 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-32705120

RESUMEN

Late frost can cause damage to trees, especially to the developing bud of broadleaf species in spring. Through long-term adaptation, plants adjust leaf phenology to achieve an optimal trade-off between growing season length and frost avoidance. In this study, we aim to assess ecotypic differentiation in leaf development of sugar maple populations planted in a common garden. A total of 272 sugar maple seedlings from 29 Canadian provenances were planted at the northern boundary of the natural range, and the phenological phases of bud and leaf development were monitored during spring 2019. The wide geographical area under evaluation showed a complex seasonal pattern of temperature, with spring warming occurring later in the north and close to the sea. Overall, leaf development lasted between 20 and 36 days, from the end of May to end of June. We observed different timings and rates of leaf development among provenances, demonstrating the occurrence of ecotypes in this species. Minimum April temperatures of the original sites were able to explain such differences, while maximum April temperatures were not significant. Seedlings from sites with colder minimum April temperatures completed leaf development earlier and faster. On average, leaf development diverged by up to 6 days among provenances, with minimum April temperatures ranging from -3 to 3 °C. Our results demonstrated that the avoidance of late spring frost is a driving force of leaf development in sugar maple populations. In the colder sites, the growing season is a limiting factor for tree growth. Thus, when thermal conditions become favorable in spring, an earlier growth reactivation and high metabolic activity ensure a fast leaf emission, which maximizes the period available for photosynthesis and growth. These patterns demonstrate the long-term phenological adaptation of sugar maple populations to local climatic conditions and suggest the importance of frost events for leaf development.


Asunto(s)
Acer , Canadá , Hojas de la Planta , Estaciones del Año , Temperatura , Árboles
12.
Food Res Int ; 130: 108939, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32156386

RESUMEN

Propolis has beneficial effects anti-inflammatory, anti-diabetes and anti-obesity in human or murine models, but its mechanism has not been fully elucidated. This study was to investigate the effects of ethanol extract of propolis (EEP) on the gut microbiota, and to analyze the associations between these alterations of gut microbiota and insulin resistance and obesity in high fat diet (HFD)-fed mice. Male C57BL/6J mice were fed with chow diet, high-fat diet, and high-fat diet supplemented with 1% EEP or 2%EEP. EEP supplementation reduced HFD-induced weight gain and liver fat accumulation, proinflammatory cytokines and insulin resistance, and improved glucose tolerance and lipid profile. Meanwhile, EEP supplementation in HFD-fed mice increased anti-obesity and anti-inflammatory bacteria such as genera Roseburia and Intestinimonas and species Parabacteroides goldsteinii and Parabacteroides distasonis, and reduced pro-inflammatory bacteria such as genera Faecalibaculum and Prevotella and species Bacteroides vulgatus. These dominant bacterial taxa altered by EEP were significantly associated with the metabolic parameters of insulin resistance and obesityin HFD-fed mice. The results in this study indicated that EEP reduced HFD-induced obesity and insulin resistant, which may be mediated by modulating the composition and function of gut microbiota.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Etanol/química , Microbioma Gastrointestinal/efectos de los fármacos , Obesidad/inducido químicamente , Obesidad/prevención & control , Própolis/química , Animales , Bacterias/efectos de los fármacos , Citocinas/genética , Citocinas/metabolismo , Endotoxemia/inducido químicamente , Endotoxemia/prevención & control , Regulación de la Expresión Génica/efectos de los fármacos , Prueba de Tolerancia a la Glucosa , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL
13.
Chem Biodivers ; 17(1): e1900489, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31663269

RESUMEN

The chemical composition and in vitro antioxidant activity of the essential oil of propolis (EOP) collected from 25 locations in China was investigated. Steam-distillation extraction was used to extract the EOP, and chemical composition was identified by GC/MS. The antioxidant activities of EOP were also measured. The result showed that a total of 406 compounds were detected in EOP. The major compounds of Chinese EOP were cedrol, γ-eudesmol, benzyl alcohol, phenethyl alcohol, 2-methoxy-4-vinylphenol, 3,4-dimethoxystyrene and guaiol. Principal component analysis revealed the significant correlation between EOP compositions and their origins, and certain correlation was detected between EOP and their color. Linear discriminant analysis showed that 88 % and 84 % of the propolis samples were predicted correctly as the groupings identified by climatic zone and the color, respectively. Furthermore, the differences of antioxidant activities of EOP were significant. EOP of Shandong had the strongest antioxidant activities, whereas EOP of Guangdong, Yunnan and Hunan showed the poorest.


Asunto(s)
Antioxidantes/química , Antioxidantes/farmacología , Aceites Volátiles/química , Aceites Volátiles/farmacología , Própolis/química , Antioxidantes/aislamiento & purificación , China , Aceites Volátiles/aislamiento & purificación
14.
Bioresour Technol ; 272: 83-91, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30316195

RESUMEN

This study explored the effects of co-composting of lincomycin mycelia dregs (LMDs) with furfural slag on variations in antibiotic resistance genes (ARGs) and the bacterial community. The results showed that more than 99% lincomycin was reduced after composting. Moreover, the total absolute and relative abundance of ARGs increased by 180 and 5 times, respectively. The gene lnuA was detected in the LMDs compost and it was proved to participate in lincomycin biodegradation based on the analysis of Pearson's correlation and the lincomycin degradation byproducts. Redundancy analysis showed the succession of the bacterial community had a greater influence than the environmental parameters (residual lincomycin, C/N, pH and temperature) on the variation of ARGs during composting. Composting was not effective in reducing most of the ARGs and intI1 and thus the LMDs compost is dangerous to the ecological environment.


Asunto(s)
Compostaje , Farmacorresistencia Microbiana , Furaldehído/metabolismo , Lincomicina/metabolismo , Microbiota , Antibacterianos/farmacología , Farmacorresistencia Microbiana/efectos de los fármacos , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Temperatura
15.
Huan Jing Ke Xue ; 39(10): 4817-4824, 2018 Oct 08.
Artículo en Chino | MEDLINE | ID: mdl-30229632

RESUMEN

Aerobic composting experiments were conducted using lincomycin mycelia wastes (dreg) and manure (T), using sewage sludge with manure as a control (CK). High performance liquid phase methods and high throughput sequencing were used to determine the concentration of lincomycin residue and to characterize the microbial community. The results showed that lincomycin was reduced significantly, with the concentration decreasing from 1800 mg·kg-1 to 483 mg·kg-1, accounting for 73% degradation. In addition, the bacterial community abundance and diversity indices were all lower than that of sludge-manure at the mesophilic and thermophilic phases, because of the high concentration of lincomycin residue in lincomycin mycelia dreg. By contrast, the fungal community abundance and diversity indices showed the reverse, due to the high content of organic matter and nitrogen in lincomycin mycelia dreg. Therefore, the microbial communities were greatly different between T and CK treatment with the domain genera of Paucisalibacillus, Cerasibacillus, Bacillus, Virgibacillus, Ureibacillus, Paenibacillus, and Sinibacillus in T compost and Truepera, Actinomadura, Pseudosphingobacterium, Pseudomonas, Luteimonas and Ureibacillus in CK compost. However, as the composting continued to a mature phase, most of the lincomycin was reduced, and the differences between the two microbial communities gradually decreased. This showed that composting could make lincomycin mycelia dreg harmless and could be used to turn it into a resource.


Asunto(s)
Bacterias/clasificación , Compostaje , Lincomicina/metabolismo , Estiércol/microbiología , Microbiología del Suelo , Aguas del Alcantarillado , Suelo
16.
Bioresour Technol ; 265: 155-162, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29890440

RESUMEN

This paper investigated the effect of co-composting of lincomycin mycelia dregs (LMDs) with furfural slag on the degradation of lincomycin, maturity and microbial communities. Results showed that after 66 days composting, the concentration of lincomycin was removed above 99%. The final pH, C/N and germination index (GI) all met the national standards in maturity. Enumeration of total cultivable microbes showed the composting process was not inhibited by the addition of LMDs. Microbial diversity suggested that co-composting was beneficial to increase the abundance and diversity of bacterial communities for LMDs' treatment. Canonical correlation analysis (CCA) indicated the bacteria communities were strongly affected by residual lincomycin, with lincomycin reduced greatly, microbial communities of T and CK became similar at the end of composting. The potential bacteria to degrade lincomycin were Anaerococcus, Peptostreptococcus, and Lactobacillus. Based on these results, this research indicated that the co-composting was a feasible treatment for LMDs.


Asunto(s)
Bacterias , Compostaje , Lincomicina , Furaldehído , Aguas del Alcantarillado , Suelo
17.
Sci Total Environ ; 642: 733-741, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29920460

RESUMEN

Tree xylem anatomy is associated with carbon accumulation and wood quality. Increasing nitrogen (N) deposition can cause a significant effect on xylem anatomy, but related information is limited for subtropical broadleaf tree species. A 3-year field N addition experiment, with different N addition approaches (canopy and understory) and addition rates (0, 25, and 50 kg N ha-1 yr-1), was performed beginning in 2013 in a subtropical forest of China. N addition effects on xylem tracheid (wall and lumen) size, vessel, and growth of dominant broadleaf species (Schima superba Gardn. et Champ. and Castanopsis chinensis (Sprengel) Hance) were investigated. The results showed that The effect of N addition on tracheid size was dependent on the tree species and addition approaches. Canopy N addition did not affect the tracheid size of C. chinensis, while both addition approaches increased the tracheid size of S. superba. The vessel size of both species was not affected by N addition. There was no difference in radial growth or other growth-related variables between the control and N-treated trees. These findings indicated that short-term N addition could significantly affect xylem anatomy, but might not influence tree growth. Meanwhile, understory N addition may pose challenges for mechanistic understanding and forest dynamics projection.


Asunto(s)
Monitoreo del Ambiente , Bosques , Nitrógeno/metabolismo , Xilema/química , China , Árboles
18.
Tree Physiol ; 38(8): 1225-1236, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29757427

RESUMEN

China's subtropical forests play a vital role in sequestering global carbon; therefore, it is critical to conduct a precise investigation of intra-annual wood formation in these ecosystems to clarify the mechanisms behind this. Two field experiments were established in Chinese subtropical forests to monitor weekly the intra-annual xylem formation of Pinus massoniana Lamb. from January to December 2015, using the recently developed micro-sampling approach. The effects of climate on wood formation were also assessed using linear or mixed models. Results indicate that there is an inactive period that might be semi-dormancy in subtropical pine ecosystems in January compared with the complete dormancy in temperate and boreal ecosystems and the fully active or short-term dormancy in tropical ecosystems. The duration of xylem formation of Chinese red pine in subtropical China in 2015 was 4-6 months longer than temperate and boreal forests. Moreover, trees were found to grow better during the dry season than the wet season, indicating that the Chinese red pine ecosystem is more strongly regulated by net energy than by environmental factors. Our findings indicate that China's subtropical pine forests may benefit from the expected longer dry seasons, possibly leading to better forest growth and improved carbon sequestration under continued climate warming.


Asunto(s)
Pinus/crecimiento & desarrollo , Madera/crecimiento & desarrollo , Cámbium/crecimiento & desarrollo , China , Lluvia , Estaciones del Año , Xilema/crecimiento & desarrollo
19.
Tree Physiol ; 37(11): 1546-1553, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28985432

RESUMEN

In recent decades, anthropogenic activities have increased nitrogen (N) deposition in terrestrial ecosystems. This higher availability of N is expected to impact plant growth. However, the effects of N deposition on tree growth remain inconclusive due to the wide variability of experimental methods used. This study aimed to test the effect of short-term N addition on the intra-annual wood formation of Chinese red pine (Pinus massoniana Lamb.) in a warm-temperate forest of Central China. From 2013, solution containing 25 kg N ha-1 year-1 was applied monthly to the understory of experimental plots from April to December to double the current natural N deposition. Each week from March to December in 2014 and 2015, cambial activity and the timings and dynamics of xylem formation were monitored by collecting microcores from stems. Xylem formation lasted from March to November, producing an average of 19 and 33 cells for all studied trees in 2014 and 2015, respectively. No difference in xylem cell production was observed between control and N-treated trees. Moreover, N-treated trees had similar timings, rates and durations of xylem formation as control trees. These findings indicated that short-term N addition was unable to affect timings and dynamics of xylem formation in Chinese red pine of warm-temperate forest.


Asunto(s)
Nitrógeno/metabolismo , Pinus/crecimiento & desarrollo , Madera/crecimiento & desarrollo , China , Estaciones del Año , Xilema/crecimiento & desarrollo
20.
Sci Rep ; 7: 46579, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28425482

RESUMEN

Five chemotypes, the isoborneol-type, camphora-type, cineole-type, linalool-type and borneol-type of Cinnamomum camphora (L.) Presl have been identified at the molecular level based on the multivariate analysis of mass spectral fingerprints recorded from a total of 750 raw leaf samples (i.e., 150 leaves equally collected for each chemotype) using desorption atmospheric pressure chemical ionization mass spectrometry (DAPCI-MS). Both volatile and semi-volatile metabolites of the fresh leaves of C. camphora were simultaneously detected by DAPCI-MS without any sample pretreatment, reducing the analysis time from half a day using conventional methods (e.g., GC-MS) down to 30 s. The pattern recognition results obtained using principal component analysis (PCA) was cross-checked by cluster analysis (CA), showing that the difference visualized by the DAPCI-MS spectral fingerprints was validated with 100% accuracy. The study demonstrates that DAPCI-MS meets the challenging requirements for accurate differentiation of all the five chemotypes of C. camphora leaves, motivating more advanced application of DAPCI-MS in plant science and forestry studies.


Asunto(s)
Presión Atmosférica , Cinnamomum camphora/química , Hojas de la Planta/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Monoterpenos Acíclicos , Canfanos/análisis , Alcanfor/análisis , Cinnamomum camphora/clasificación , Análisis por Conglomerados , Eucaliptol/análisis , Monoterpenos/análisis , Análisis de Componente Principal , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...